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1. Introduction

Inductance, L, is an electric circuit property that is analogous to inertia or the resistance to

change. Its value is determined by a geometry defined by the current path (1). When a voltage is

suddenly applied to a circuit, electric current does not immediately jump to its intended value.

Instead, it rises to that value in an amount of time proportional to the inductance. Similarly, when

the voltage is removed, the current does not suddenly disappear—it also drops to zero in finite

time. Inductors are specifically inserted into circuits for this type of timing control among other

reasons. From a physics perspective, the work required to overcome this resistance to change can

be thought of as putting magnetic energy into the system and is related to the inductance or the

magnetic field, B, over some volume as,

Em =
1

2
LI2 =

1

2µ0

∫

B2 dV (1)

where Em is the magnetic energy, I is the current, and dV is the volume element. Through these

relationships we are able to determine inductances and magnetic energies for simple geometries

that helps one to understand their electrical response in time. This is important in countless

applications since it is common to require a specific current profile. In most cases however, even

seemingly simple geometries escape closed-form analytic expressions and must be evaluated

through computational methods and approximations.

We are interested in measuring inductance for a complicated geometry known as the helicoil

(figure 1a). As illustrated, we see a helical coil with a constant pitch and ten gap turns (or nine

conducting turns). Also visible on the leftmost edge of figure 1a is a washer-type structure that

connects the outer (helical) conductor with an inner smooth (return) conductor that is barely

visible through the gaps in the coil. Figure 1b illustrates the device after rotation and coil

visibility is turned off. At axial positions away from the coil, the device can be treated as a

coaxial cable. An exact solution for the inductance is not possible since the current density in the

return cap is not known and the coil section itself requires approximations. The deep history of

various aspects of this problem is compelling with much effort spent on the elliptic integrals. The

earliest records date back over one hundred years to the days of Lords Rayleigh and Kelvin (2, 3)

with subsequent and substantial efforts by Rosa (4) and Grover (5). More recently (and with

modern mathematical notation), relevant derivations have been performed by Knoepfel (6, 7),

Turner (8), and Bartkowski (9). In this work, I am unable to consider short diffusion times

(current on the surface) since it requires resolving the skin depth rather than the conductor
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thickness. As the convergence analysis will show, the computational cost would be prohibitive.

If one only considers the coaxial section, inductance is more easily calculated. It should be noted

that the inductance depends on the amount of time allowed for the current to diffuse into the

conductor. In many textbooks, the derivation proceeds by assuming that current only resides on

the conductor’s surface so that only the field between conductors is calculated. In this study full

diffusion is considered so that after a sufficient amount of time, current is uniformly distributed

through the thickness of the conductors. Therefore magnetic energy is tallied in each of the

conductors and the gap between them. In this report, the inductance scaling of several helicoil

configurations are investigated using the March 2011 release of the Sandia

magnetohydrodynamics (MHD) code, ALEGRA. Several hundred thousand core hours of

simulations were run on Garnet, a Cray XE-6 located at the U.S. Army Engineer Research and

Development Center. This report is organized in the following manner. Section 2 discusses

relevant preliminaries and the computational setup—some details on coaxial conductors and

magnetic diffusion are considered. Section 3 provides the inductance scaling as well as a

quadratic fit which is approximately equivalent for 1/8-, 1/4-, and 3/8-inch air gaps.

Figure 1. (a) Helicoil with ten gap turns (or nine conducting turns) and a constant pitch. (b) Opposite end

of the same device and with coil visibility turned off. The inner and outer conductors are clearly

visible and form a coaxial cable.

2. Preliminaries and Computational Setup

Since the coil is bounded axially by coaxial cylinder sections, it is helpful to first discuss the

inductance and diffusion of a coaxial cable. To further simplify the problem, the return cap can

be eliminated by extending the conductors from one side of the mesh to the other, axially.

Current return is then handled by the boundary conditions. The inductance for this problem has
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an analytic solution, which is derived in appendix A. Niederhaus has documented a verification

study for the problem and shown that ALEGRA agrees to within 0.1% of theory (10). The bulk

of the magnetic energy is stored between the conductors.

Following Jackson’s analysis (11), an order of magnitude relation for the magnetic diffusion time,

τ , in a conductor can be obtained by considering the magnetic diffusion equation,

∇2B = µσ
∂B

∂t
. (2)

The coaxial cable is azimuthally symmetric and invariant along z, so that in cylindrical

coordinates the Laplacian operator, ∇2, reduces to one (radial) dimension,

∂2B

∂ρ2
+

1

ρ

∂B

∂ρ
.

Since the denominator holds units of length squared, it is clear that ∇2 = O(B/L2) and
∂B
∂t

= O(B/τ ), where L is a characteristic (radial) length over which the field diffuses and has

dimensions of time. These yield,

τ = O(µσL2). (3)

In perfect conductors (i.e., superconductors) it takes an infinite amount of time for the field to

diffuse so that all of the current resides on the surface. For an aluminum conductor with

thicknesses, 1/8 and 1/4 inch, the characteristic diffusion times are about 440 and 1770 µs,

respectively. For helicoils however, there are no symmetries. The full Laplacian must be

considered. As a result, the diffusion time can increase markedly.

For this study, I use the Sandia National Laboratories Finite Element MHD code, ALEGRA. It

couples Maxwell’s equations with multimaterial solid dynamics in the MHD approximation,

which ignores displacement currents (12–14). Based on our confidence from Niederhaus’s

validation work, we proceed with 3D simulations of the helicoil. In general, our geometry (figure

1) consists of two concentric, cylindrical shells connected at one end by a simple load so that

current coming down either the inner or outer shell can return via that connection along the other

cylindrical shell. On the outer conductor, we cut out a helix with the following characteristics:

the number of conductor turns, Nc = {1, 2, .., 9}, and the axial gap between conducting turns (or

slot gap), s={1/8, 1/4, 3/8 inch}. For each case, the pitch, p, remains constant. Pitch is defined
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as the axial length of one full conducting loop or turn. Recall that the number of gap turns,

Ng = Nc + 1. For these studies, the length of the full helicoil, Lh, is held fixed so that,

Lh = s + pNg . From this point on, N refers to the number of conducting turns (i.e., N = Nc).

Due to the severe computational cost associated with s = 1/8 inch and small N—which will

become clear during the convergence analysis—the s = 1/8-inch scope is limited to 4 ≤ N ≤ 9.

Additionally, for 3/8 inch, N is limited to less than seven because the thicker conducting lengths

could cause the coil section to extend beyond its intended length. Algorithmic checks were not

put in place to monitor this.

A constant 100 amp DC current is supplied via the boundary condition that jumps to steady state

within a few compute cycles—a rate much faster than the diffusion time and the convergence time

for inductance. The current is allowed to diffuse fully through the conductor thickness, thus the

skin depth is equal to conductor thickness (something easy to resolve). A consequence of this is

that field diffuses into the inner volume. This bypasses the shielding effect which is equivalent to

the armature not being present (15). Other device dimensions are 4.5-inch outer diameter and

1/8-inch thickness for the outer conductor, and 3-inch outer diameter and 1/4-inch thickness for

the inner conductor. Current feed (front), coil (middle), and return (back) lengths are 1.2, 0.2,

and 0.08 m, respectively for a total device length of about 1.5 m.

The computational domain is defined by a radial trisection mesh consisting of five radial blocks or

layers. Each block has a radius so that the 2nd and 4th blocks match the inner and outer

conductor thicknesses, respectively. This is generally good practice and minimizes mixed cells

and currents. The latter is not completely true however. Due to the numerical method and in

order to preserve a divergence-free B (16), currents move around cell edges. Since each cell

edge is shared by multiple cells (two in 2D and four in 3D), current will appear in each. This has

ramifications for tallying current since tallies are commonly defined by sidesets and those are

typically controlled by blocks. There is no easy way to extend them on a cell-by-cell basis, so

relevant surface currents can be under-predicted. In time, as currents diffuse into the conductor,

the tallied current approaches the expected current. If these details are critical, one can use

advanced visualization tools, such as Ensight, to integrate the current density out to a radius that

includes cells containing smeared current.

Before initiating the primary study, a substantial amount of convergence analysis is required to

ensure an accurate solution. These details are outlined in appendix B. This amount of work

actually exceeds that required for a seemingly simple inductance study! In contrast to the local

behavior of solid mechanics calculations, MHD simulations deal in field quantities that extend to

infinity—this means that domain size can affect the results. Additionally, more numeric solvers
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(17) are employed each with their own tolerances. This is all in addition to the normal

convergence analysis required for mesh resolution. Initially, I chose our convergence tolerance

for relevant variables as 0.1%—meaning that, once subsequent refinement in a variable yielded a

change that small, I considered it to be converged. Table 1 lists the values where that

convergence approximately occurs as well as the values used in the actual study. Unfortunately, a

0.1% tolerance for all variables was far too computationally expensive. It order to manage this,

tolerances for several variables were relaxed—these are italicized in the table. At these settings,

each calculation required 512 cores so that the whole study (21 final configurations and testing)

required up to 300,000 core hours—where each calculation was run out to 50 ms with a

user-defined time step of 0.5 ms. The ALEGRA input script is provided in appendix C. Several

scripts are also required to post-process the data: (appendix D) a shell script to automate

generating text files of the inductances from simulations and (appendix E) MATLAB code to

process and plot all of the data.

Table 1. Parameters and their convergence requirements.

Minimum Value Required
Parameter to Converge

for a 0.1% Tolerance
Actual Values Used

Axial extent (multiples of coil length) 6 6

Azimuthal resolution (cells per 360◦) 120 120

Aztec tolerance 10−6 10−6

Mesh gap (inches) 3 2

Radial extent (multiples of outer conductor radii) 4 3

Radial mesh bias 12 12

Resolution (cells across conductor thickness) 4 3

Figure 2 illustrates some examples (Ng = 2 and 7, respectively) of the geometries to be evaluated

for a 1/8-inch spacing between coils. Note the very long axial extent, which connect the coaxial

section to the mesh boundary where current is supplied. This requirement is forced by boundary

conditions but is not completely understood (see section B.2 for more details).

3. Inductance Scaling

Figure 3 plots the inductance as a function of time for several configurations with 1/4-inch air gap

between the conductors. The magnetic diffusion time scale is on the order of tens of

milliseconds—1 to 2 orders of magnitude larger than that for the coaxial cable. In each case, the
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Figure 2. Helicoil with 1/8-inch air gap; and (a) Nc = 1, (b) Nc = 6.
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Figure 3. Helicoil inductances for a 1/4-inch air gap between the coils.

inductance starts to converge after about 10 ms. It is clear that the steady-state inductance is

growing rapidly as the number of turns increases. Figure 4 displays the steady-state field for each

coil configuration with a 1/4-inch air gap. In order to prevent color saturation at intermediate

values of Nc, the color scale is biased so that its maximum values are based on Nc = 9. In each

panel, horizontal bars represent the coaxial sections where the field between the inner and outer

conductors dominate. It is apparent why certain convergence work is required. With more turns,

a measurable amount of field couples to (or exceeds) the boundary. Consequently, that field is

not tallied into the inductance leading to an erroneous result. Extent and magnitude of the fields
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Figure 4. Helicoil geometries and their associated steady-state magnetic field distribution.

clearly grow with the number of turns—which is consistent with an increasing inductance as seen

in equation 1. Appendix F illustrates these fields with coil visibility turned off

I encountered some difficulty in determining the most appropriate inductance to use from

simulations, which was resolved by discussions with Satapathy (18), Bartkowski (15), and

Berning (1). Specifically, we are interested in the self-inductance of an (hypothetical) isolated

helicoil and interior conductor. The main question was whether subtracting off the coaxial

inductance or that plus the additional energy to its radial exterior—due to the presence of the

coil—was more appropriate. By subtracting off the analytic inductance, we are only considering

the coaxial cable’s self-inductance that is similar to Bartkowski and Berning’s analysis. If I were

to account for all energy from the boundary to the coil/coax transition, I would be subtracting off

both self and only part of the mutual inductance between the coax and coil. The mutual

inductance should be considered over all free space, which was not really possible to do here.
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The series inductance from the adjacent coaxial sections can be determined analytically, and is

evaluated to be 85 nH/m using equation A.12 with radial dimensions previously mentioned. The

total coaxial contribution, 110 nH, is constant for all cases and subtracted from the inductance

reported by ALEGRA so that figure 5 shows values for the coil section only. At large N ,

inductance due to the coaxial sections is very small; however, at small N , they are

similarly-valued. As a comparison, an equivalently-sized device that is purely coaxial, has an

inductance of 127.4 nH while ALEGRA determines it to be 126.8 nH, a 0.5% difference.

1 2 3 4 5 6 7 8 9

10
2

10
3

Number of Conductor Turns

In
d

u
c
ta

n
c
e

 (
n

H
)

 

 

1/8" gap ALEGRA

1/4" gap ALEGRA

3/8" gap ALEGRA

Bartkowski, 2011

Solenoid

50(N
2
+N+1)

8
3450

3500

3550

3600

3650

Figure 5. Helicoil inductance scaling.

Figure 5 illustrates the helicoil inductance scaling for several cases as well as data from

Bartkowski and Berning (9). In that study they use a discrete-ring simplification in measuring

coil inductance and numerical methods to evaluate the many elliptic integrals. It was expected

however that the method would lose validity as N decreased. Niederhaus (19) suggested

comparing the result from an equivalent solenoid,

L =
µ0πN2r2

c

z
,
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where rc is the coil radius and z is the total coil length. I chose the radius to be the coil’s inner

surface as it had the best agreement with all other data series for large N . For the 1/4-inch

geometry a surprisingly simple quadratic fit was found to be, L[nH] = 50(N2 + N + 1). In

future work, I plan to build a model that incorporates the coil cross section—this should improve

accuracy for inductance at small N .

All of the methods show remarkable agreement at large N . It was surprising though that the slot

gap size had such a minor impact on the results. Those changes are on the order of our precision,

which is constrained by computational cost. Satapathy (18) indicates that this lack of a gap size

dependence could be due to the fact that the flux linkage remains the same for a given N . If we

were to continue increasing N , eventually we would stop resolving the coils as more and more of

them are squeezed over the same axial distance, decreasing the pitch and causing the helicoil to

resemble a coaxial cable (since the air gaps would not be resolved). Consequently, inductance

would drop—unphysically.

4. Conclusion

In this report, I have provided details on how inductance scales with the number of loops and gap

size for helicoil inductors using ALEGRA. A great majority of the effort is spent ensuring proper

convergence of relevant variables for an accurate solution, such as mesh size, resolution, grid

biasing, and solver tolerance. Convergence was determined based upon an initial tolerance. If

subsequent changes in the sensitive variables were less than the tolerance, then that variable had

converged. Initially I chose 0.1% as the tolerance, however once all relevant variables were

evaluated I discovered that production simulations had become too computationally

expensive—each requiring thousands of cores for several hours. On our unclassified resources

this was prohibitive given the tens of simulations required. Consequently, I backed off the

tolerance on some of the variables, which brought the cost for each simulation down to about one

thousand cores for several hours.

For these helicoil geometries, steady-state magnetic diffusion time requires several tens of

milliseconds, up to two orders of magnitude greater than that required for coaxial conductors.

Inductances are shown to scale quadratically with the number of conductor turns. At moderate to

large N , results are in agreement with data provided by Bartkowski and Berning (9) as well

inductance calculated for a simple solenoid—a function of the number of turns squared. It is

clear then that as N increases, the squared term dominates so any linear or constant terms become
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negligible. Errors will grow, however, with decreasing N . Interestingly, changes in the air gap

between turns affect the solution by only a few percent so that the fit can be roughly applied to

any gap size within the bounds investigated.
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Appendix A. Analytic Solution for the Inductance of a Coaxial Cable with

Full-Field Diffusion

Equation 1 can be rewritten and broken into three regions representing the inner and outer

conductors and the gap between them,

LI2 = µ
(
∫ r3

r4

H2

43
dV +

∫ r2

r3

H2

32
dV +

∫ r1

r2

H2

21
dV
)

(A-1)

where r4 < r < r3 represents the inner conductor (region I), r3 < r < r2, represents the gap

between conductors (region II), and r2 < r < r1 represents the outer conductor (region III). In

order to proceed, the current density, J , in each region must also be evaluated which then

provides a corresponding solution for H using the relation,

∮

~H · ~dl =
∫

~J · ~ds

where in cylindrical coordinates,

dl = ρ dφ = 2πρ

ds = ρ dρ dφ

It should be noted that here, ρ, is a dummy radial variable and not material density.

In regions I and III, current density, J = I/A, is uniformly distributed through the conductors so

that the enclosed current gives,

JI =
I

π(r2
3 − r2

4)

JIII =
I

π(r2
1 − r2

2)

In the gap, the enclosed current is simply I . Expressions for the magnetic field can now be

evaluated giving,
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HI =
I

(2πr)π(r2
3 − r2

4)

∫ r

r4

ρ dρ
∫

2π

0

dφ =
I(r2 − r2

4
)

2πr(r2
3 − r2

4)
(A-2)

HII =
I

2πr
(A-3)

HIII =
I

(2πr)π(r2
1 − r2

2)

∫ r1

r
ρ dρ

∫

2π

0

dφ =
I(r2

1
− r2)

2πr(r2
1 − r2

2)
(A-4)

Inserting equations A-2–A-4 into equation A-1 yields the following expression for the inductance,

LI2 = µ
(

I

2π

)2
{

∫ r3

r4

1

r2

(

r2 − r2

4

r2
3 − r2

4

)

dV +
∫ r2

r3

dV

r2
+
∫ r1

r2

1

r2

(

r2

1
− r2

r2
1 − r2

2

)

dV

}

(A-5)

Each of the integrals—I1, I2, and I3, respectively—in equation A-5 can now be evaluated

separately. Noting that in cylindrical coordinates, dV = 2πlr dr , and the ri are constants,

I1 =
∫ r3

r4

2πlr

r2

(

r2 − r2

4

r2
3 − r2

4

)2

dr = −
2πl

(r2
3 − r2

4)
2

∫ r3

r4

1

r
(r4 − 2r2r2

4
+ r4

4
) dr

= −
2πl

(r2
4 − r2

3)
2

{

1

4
(r4

4
− r4

3
) − r2

4
(r2

4
− r2

3
) + r4

4
ln
(

r4

r3

)}

(A-6)

To put this and I3 in a convenient form inspired by Robinson (20), equation A-6 needs to be

rewritten. Assuming that A = r4 and B = r3, equation A-6 becomes,

−2πl

{

1

4

(A4 − B4)

(A2 − B2)2
− A2

(A2 − B2)

(A2 −B2)2
+ A4

ln(A/B)

(A2 − B2)2

}

(A-7)

but, (A4 − B4) = (A − B)(A + B)(A2 + B2), so that

A4 −B4

(A2 − B2)2
=

A2 + B2

A2 − B2

and equation A-7 becomes,
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−2πl

{

1

4

(A2 + B2)

(A2 −B2)
−

A2

(A2 − B2)
+

A4 ln(A/B)

(A2 − B2)2

}

(A-8)

Applying this to equation A-6 we obtain,

I1 = 2πl

{

−
r4

4
ln(r4/r3)

(r2
4 − r2

3)
2

+
1

4

(3r2

4
− r2

3
)

(r2
4 − r2

3)

}

. (A-9)

When the same approach in equations A-7–A-8 is used to deal with quartic terms in I3, one

obtains,

I3 = 2πl

{

r4

1
ln(r1/r2)

(r2
1 − r2

2)
2

−
1

4

(3r2

1
− r2

2
)

(r2
1 − r2

2)

}

. (A-10)

Lastly, the solution to I2 is easily obtained and results in,

I2 = 2πl ln
(

r2

r3

)

. (A-11)

Combining equations A-9–A-11 and inserting them into equqation A-5 yields the following

expression for the inductance of a coaxial cable with uniform current density through the

conductors,

L =
µl

2π

{

−
r4

4
ln(r4/r3)

(r2
4 − r2

3)
2

+
1

4

(3r2

4
− r2

3
)

(r2
4 − r2

3)
+ ln

(

r2

r3

)

+
r4

1
ln(r1/r2)

(r2
1 − r2

2)
2

−
1

4

(3r2

1
− r2

2
)

(r2
1 − r2

2)

}

. (A-12)
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Appendix B. Mesh Convergence

There are a number of quantities that need to be evaluated for mesh convergence. This appendix

provides the important details for determining what are the appropriate settings for variables

relevant in ensuring an accurate solution. I monitored inductance, current, and resistance,

however; this section only documents the former, which is the most useful. It is essential to pick

the most constraining cases to test for convergence or else results from more constraining answers

can give inaccurate results. Figure B-1 illustrates this for the 1/8-inch case for small

N—originally I assumed that large N would be the more constraining case. For this study we

are interested in converging inductance to the point where the fractional change no more than 1%.

In most cases, each convergence property is only compared against iterations of itself. Few

combinatorial cases are considered. Originally, the goal was to have a 0.1% constraint, but that

had to be relaxed due to the significant computational cost in asserting such a tolerance.
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Figure B-1. Inductance trends illustrating results that are not appropriately converged

(1/8-in air gap, small N ).
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B.1 Resolution

Resolution is a common metric for convergence since the smallest object of interest must be

resolved. Because it controls the total number of cells in a simulation, it strongly affects total

calculation time. In our case that feature is usually either the spacing between loops or the

thickness of the conductors, whichever is smaller. If the air gaps between loops in the helix are

not resolved, the structure is lost and simply appears as a continuous (coaxial) conductor which

has an inductance several orders of magnitude lower than a helicoil. For our cylindrical mesh,

the radial, axial, and azimuthal resolution must be evaluated.

Figure B-2 illustrates the inductance and its fractional change as a function of the number cells

across the conductor thickness when the air gap is 1/4 in. Recall that this is evaluated for the

thinnest conductor which is 1/8 in thick. These results indicate that we should have at least about

four cells across the conductor for a tolerance of 0.1%. Due to computational cost, this

requirement was relaxed to three.

1 2 3 4 5
4350

4400

4450

4500

4550

In
d

u
c

ta
n

c
e

 (
n

H
)

1 2 3 4 5
10

−2

10
−1

10
0

10
1

Resolution  (cells through conductor thickness)

F
ra

c
ti

o
n

a
l 

c
h

a
n

g
e

 (
%

)

Figure B-2. Inductance and its fractional change as a function of

the number of cells through the conductor thickness

for a 1/4-in air gap between the coils.

Figure B-3 illustrates the inductance and its fractional change as a function of the number cells

across the conductor thickness when the air gap is 1/8 in. These results also conclude that at least

4 cells are required. Note the massive jump in inductance when transitioning from 2 to 3 cells

across the conductor. At low resolutions, two cells still cannot resolve the coils so the structure

appears continuous, resembling coaxial cable.
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Figure B-3. Inductance and its fractional change as a function of

the number of cells through the conductor thickness

for a 1/8-in air gap between the coils.

Figure B-4 illustrates the current and its fractional change as a function of the number of

azimuthal cells comprising the 360 degrees extent of the mesh. The data indicates that in going

from 80 to 120 cells, there is an approximate 0.15% change in the current. From 200 to 240

cells, that change drops to 0.01%. Current converges to our threshold once we have at least 120

azimuthal cells.

Figure B-5 repeats these comparisons, but for inductance. The data shows that there is a 0.2%

change in going from 80 to 120 cells about the mesh while that drops to 0.1% in going from 120

to 160 cells. The inductance, rather than current, is the driving constraint for azimuthal

resolution. We therefore select a minimum of 160 cells as our azimuthal resolution.

B.2 Mesh Size

The inductance, L, is calculated from the magnetic energy, Em, as, L = 2Em/I2 , where I is the

current. Recalling equation 1, we can see that that the inductance is directly coupled to the

amount of magnetic field in the computational domain. Thus if the volume or mesh is not large

enough, an insufficient amount of field will be tallied leading to an incorrect inductance. Both

the axial and radial extent therefore need to be evaluated for convergence.
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Figure B-4. Current and its fractional change as a function of the

number of azimuthal cells.
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Figure B-5. Inductance and its fractional change as a function of

the number of azimuthal cells.
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Radially, the inductance is illustrated in figure B-6 in multiples of the outer conductor’s outer

radius. We find that a radial extent of 3 radii is sufficient to meet our convergence tolerance.

Current is not illustrated as all values of the outer conductor radii already yielded acceptable

results. Curiously, in figure B-6 as well as figure B-7, even though the amount of mesh is

increasing, the inductance is actually going down. This is counter-intuitive and not yet

understood completely. At the time of publication, the variable EPOYNT is found to be changing

with mesh size. This quantity represents the total electromagnetic energy being dumped into the

domain, which should be independent of mesh size [Ni2012].
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Figure B-6. Inductance for axial extent.

In order to satisfy magnetic field boundary conditions, the coil needs to be sufficiently far from

the boundary where current enters the mesh. This can be accomplished by inserting a long

coaxial section between the coil and boundary. However this adds inductance (given by equation

A-12) which is directly proportional to the coaxial length. Specifically, that amount is 17.2 nH

for an 8-in coaxial length (our coil length). Nominally, inductance in the simulations should only

increase by this much as well. However, there will be variations due to non-convergence for

some variables as well as general convergence as more field is captured with an increasingly

distant axial boundary. Figure B-6 illustrates this behavior where the difference between

increasingly larger coaxial sections is compared with the analytic value. The plot indicates that it

takes an additional coaxial section of at least six coil lengths (4 feet) before results begin to

converge. This is one of the biggest computational costs and is driving development of a new

capability in Alegra referred to as “potential drive” where the user specifies an electric potential
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across the mesh [Ni2012]. Additionally some of this cost could be relaxed by introducing an

axially biased mesh in the added coaxial section, but this was not performed. A final component

of the axial study is the gap between the non-current supplying mesh boundary and end cap of the

device. Convergence of this “mesh gap” is illustrated in figure B-7. The data shows that three

inches are required to satisfy our convergence tolerance.
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Figure B-7. Inductance and its fractional change as a function of

the mesh gap.

B.3 Radial Mesh Bias

Because these studies may require the mesh to grow quite large, it is useful to look for ways to

reduce the total number of elements to keep total simulation time down. This would be useful

where there are only field quantities, such as those radially distant from the conductors. We can

apply a mesh bias such that the resolution decreases as we move further away from the outer

conductor. This quantity should also be checked such that resolution does not become so coarse

as to affect the inductance. For all cases of the mesh coarsening multiplier (2-12x), we found that

results did not change more than our convergence threshold (figure B-8).
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Figure B-8. Inductance and its fractional change as a function of

radial mesh biasing.

B.4 Solver Tolerance

Finally, during the simulation the magnetic solver, AztecOO [He2007], iterates towards a solution

every cycle. A user-defined threshold indicates the amount of accuracy in determining whether it

needs to iterate further or whether it has achieved a solution for that cycle. This Aztec tolerance

also needs to be evaluated for convergence. If the tolerance is too loose, wildly inaccurate

answers can result. On the other hand, a tolerance too tight can give you the correct answer but

take an inordinate amount of time due to the increased precision. As figure B-9 indicates,

changing the tolerance from 10−4 to 10−6 can reduce the inductance about 1%. Tolerances

tighter than that have little effect on the results. Consequently, I chose 10−6 for this study.
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Figure B-9. Inductance and its fractional change as a function of

the magnetic solver.
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Appendix C. Sample Input Script for Alegra Calculations Using Dakota

$---------------------------------

$

$ Helicoil

$

$ R. Doney

$ Oct. 2011

$

$---------------------------------

${_FORMAT="%.10g"}

${in2m = 0.0254}

$ --- Dakota ---

$ dakota comments use #

dakota input = "

strategy,

single_method

tabular_graphics_data

tabular_graphics_file = ’opt_history_data’

interface,

direct

analysis_driver = ’alegra’

processors_per_analysis = 512

# asynchronous

variables,

continuous_design = 1

lower_bounds 1

upper_bounds 9

descriptors ’_NumCondTwists_’

responses,

num_objective_functions = 1

no_gradients

no_hessians

method,

multidim_parameter_study

partitions 8

"

end

$dt:{dt = 500.0e-6} $ Set time manually

$TermTime:{TermTime = 50.0e-3} $ End simulation (s)

$NumCycles:{NumCycles = TermTime/dt} $ Number of cycles
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$ --- Resolution setting ---

$MagDiffRes:{MagDiffRes = 3}

$SlotWidthRes:{SlotWidthRes = 2} $ Number of elements across gap between conductor twists

$ --- Inner Conductor ---

$arm_thick:{arm_thick = 1/4*in2m}

$d_arm_out:{d_arm_out = 3*in2m}

$r_arm_out:{r_arm_out = d_arm_out/2}

$r_arm_in: {r_arm_in = r_arm_out-arm_thick}

$r_arm_center:{r_arm_center = (r_arm_in+r_arm_out)/2}

$plate_thick:{plate_thick = 1/4*in2m}

$ --- Outer Conductor ---

$helix_thick:{helix_thick = 1/8*in2m}

$d_helix_out:{d_helix_out = 4.5*in2m}

$r_helix_out:{r_helix_out = d_helix_out/2}

$r_helix_in: {r_helix_in = r_helix_out-helix_thick}

$r_helix_center:{r_helix_center = (r_helix_in + r_helix_out)/2}

$ --- Helix characteristics ---

$ The simulational current feed length needs to be a multiple of the total helical length

$Helix2BndryMultiplier:{Helix2BndryMultiplier = 6}

${Lmiddle = 8*in2m} $ length of helical section (m)

${Ltail = 3.25*in2m} $ Length of outer conductor tail (m)

${Lfeed = Helix2BndryMultiplier*Lmiddle} $ Length of simulational current feed (m)

${LfeedE = 3.5*in2m} $ Length of experimental current feed (m)

${L = Lfeed + Ltail + Lmiddle} $ Conductor length excluding cap (m)

${Linches = L/in2m} $ Conductor length excluding cap (inches)

${slotwidth = 1/4*in2m}

${NumGapTwists = _NumCondTwists_+1} $ Number of slot (gap) twists

${pitch = (Lmiddle-slotwidth)/NumGapTwists} $ Pitch (m/turn)

${pitchIn = pitch/in2m} $ Pitch (inches/turn)

$ --- Mesh Size ---

$r_field:{r_field = 3*r_helix_out} $ Amount of mesh to include beyond outer conductor (m)

$r_mesh: {r_mesh = r_helix_out + r_field} $ Max radial extent of mesh

$MeshGap:{MeshGap = 2.0*in2m} $ Mesh padding between boundary and cap

$RadBias:{RadBias = 12} $ Radially bias the mesh to make coarser

$ --- Calculate Magnetic Diffusion Time ---

$CurrentRampTime:{CurrentRampTime = 5.0e-6}

$ConstEcon:{ConstEcon = 1.0e6}

$ConstEcon:{ConstEcon = 2.5e7}

$MaxCondThick:{MaxCondThick=max(arm_thick,helix_thick)}

$MagDiffTime:{MagDiffTime = 1.0e6 * ConstEcon * 4*PI*1.0e-7 * MaxCondThick^2} $ microseconds

$ --- Determine resolution ---

$SIZE1:{SIZE1 = slotwidth/SlotWidthRes} $ Resolve based on Air gap between loops

26



$SIZE2:{SIZE2 = helix_thick/MagDiffRes} $ Resolve based on conductor thickness

$CELL_SIZE:{CELL_SIZE = min(SIZE1,SIZE2)}

$ 1.05 is used to fix truncation to 0 errors from using ’int’

$arm_cell_size:{arm_cell_size = arm_thick/int(arm_thick/CELL_SIZE+1.05)}

${angle = 360}

${ntheta = 120}

${GMIN_X = 0}

${GMIN_Y = 0}

${GMIN_Z = 0}

${GMAX_X = r_mesh}

${GMAX_Y = angle}

${GMAX_Z = L+plate_thick+MeshGap}

$ ----------------------------------------------------------------------

title: Constant pitch helicoil

units, si

termination time {TermTime}

$termination cycle 1

transient magnetics

void conductivity, 1.0e-3

delta time {dt}

response functions

tracer 100, variable = COORDINATES, Y, end

end

$ --- Define mesh

${NumZ = 1}

${NumR = 5}

${NumA = 1}

mesh, inline

radial trisection

trisection blocks, 4

transition radius, {0.5*r_arm_in}

numz {NumZ}

zblock 1 {GMAX_Z} first size {CELL_SIZE}

numr {NumR}

rblock 1 {r_arm_in} first size {arm_cell_size}

rblock 2 {r_arm_out - r_arm_in} interval {MagDiffRes}

rblock 3 {r_helix_in - r_arm_out} first size {CELL_SIZE}

rblock 4 {r_helix_out - r_helix_in} interval {MagDiffRes}

rblock 5 {r_mesh - r_helix_out} first size {CELL_SIZE} last size {RadBias*CELL_SIZE}

numa {NumA}

ablock 1 {angle} interval {int(ntheta)}
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end

set assign

nodeset, ihi, 20 $ r high

nodeset, jhi, 30 $ theta high

nodeset, jlo, 40 $ theta low

nodeset, khi, 50 $ z high

nodeset, klo, 60 $ z low (current feed)

sideset, ihi, 20

sideset, jhi, 30

sideset, jlo, 40

sideset, khi, 50

sideset, klo, 60

end

end

tracer points

eulerian tracer 100 x {r_arm_center} y 0 z {Lfeed}

end

block 1 to {NumR * NumZ * NumA}

eulerian mesh

add diatom input

end

$ --- TRANSIENT MAGNETICS ---

current tally, 1, sideset 60, end

cylindrical axial slot bc, sideset 60, 100.0, EXCLUDE MATERIAL 1,

x 0. y 0. z 0.

x 0. y 0. z {GMAX_Z}

{r_arm_center},{r_arm_center},{r_helix_center},{r_helix_center}

$ circuit node 1 fixedv 0.0

$ circuit node 2

$ circuit node 3

$ circuit node 4 startv -10.0e3

$ circuit element, 1 2, mesh

$ circuit element, 2 3, resistor, 1.0e-3

$ circuit element, 3 4, inductor, 215.0e-9

$ circuit element, 4 1, capacitor, 525.0e-6

$ circuit solver, rel 1.0e-5, abs 1.0e-2

e tangent bc, sideset 60, 0.0, MATERIAL 1, x 0.0 y 1.0 z 1.0

aztec set, 1

diom insertion algorithm, hex
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diatom

package InnerConductor

material 1

numsub 50

insert cylinder

ce1 0 0 {GMIN_Z}

ce2 0 0 {L}

rinner {r_arm_in}

radius {r_arm_out}

endinsert

endpackage

package OuterConductorFeed

material 1

numsub 50

insert cylinder

ce1 0 0 {GMIN_Z}

ce2 0 0 {Lfeed}

rinner {r_helix_in}

radius {r_helix_out}

endinsert

endpackage

package OuterConductorTail

material 1

numsub 50

insert cylinder

ce1 0 0 {L-Ltail}

ce2 0 0 {L}

rinner {r_helix_in}

radius {r_helix_out}

endinsert

endpackage

package ReturnDisk

material 1

numsub 50

insert cylinder

ce1 0 0 {L}

ce2 0 0 {L+plate_thick}

rinner {r_arm_in}

radius {r_helix_out}

endinsert

endpackage

package ’Helix middle section’

material 2

numsub 50

insert cylinder
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ce1 0 0 {Lfeed}

ce2 0 0 {Lfeed + Lmiddle}

rinner {r_helix_in}

radius {r_helix_out}

endinsert

delete r2dp

ce1 = 0.0 0.0 {Lfeed}

ce2 = 0.0 0.0 {Lfeed + Lmiddle}

$ These points are in (u,v) space which is defined by CE1 and CE2

$ Here we use (r,z)

$ dr: {dr = 0.5*helix_thick}

$ Need dr because without it, current can still flow across gap

p = {r_helix_in - dr} 0

p = {r_helix_out + dr} 0

p = {r_helix_out + dr} {slotwidth}

p = {r_helix_in - dr} {slotwidth}

ce3 = 0.0 1.0 0.0 $ direction of rotation for helix

pitch = 0.0 {pitch} $ (u,v) space

twist = {NumGapTwists}

enddelete

endpackage

enddiatom

end $ End Physics --------------------------------------

aztec 1

solver, cg

scaling, none

conv norm, rhs

max iter, 10000

tol = 1.0e-8

multilevel

fine sweeps = 1

fine smoother = Hiptmair

coarse smoother = LU

multigrid levels = 10

interpolation algorithm = AGGREGATION

smooth prolongator

end

end

$ --- Plot details ---

emit output: time = {dt}

emit hisplt: time interval = {dt}

emit plot: time interval = {dt}

Plot variable

je
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be

density

density, avg

scalar conductivity

end

$ --- Materials ---

material 1 Aluminum

model = 100 $ CTH EP

model = 105 $ Econ

end

model 100, keos miegruneisen

matlabel = ’6061-T6_AL’

end

model 105, ec knoepfel

sigma0 = {ConstEcon}

alpha = 0.0

betacv = 0.0

end

$ ------------------

material 2 Aluminum

model = 100

model = 105

end

exit
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Appendix D. Example Shiv Script for Batch Processing

To extract the relevant data out of .his files generated by ALEGRA, one can script "shiv" for batch

processing. This script may be run from the UNIX command line.

#!/bin/csh -f

set TMPD = /Users/rdoney/MFC/InductanceStudy/Ntheta

cd $TMPD

set INPUT = CoilN9s14r4t

set RunID = 120

while ($RunID <= 320)

set FILENAME = ${INPUT}${RunID}

printf "Processing ${FILENAME}...\n"

mkdir ${FILENAME}TxtFiles

shiv -b -g CURRENT "./${FILENAME}.his" > "${FILENAME}TxtFiles/${FILENAME}_CURRENT.txt"

shiv -b -g INDUCTANCE "./${FILENAME}.his" > "${FILENAME}TxtFiles/${FILENAME}_INDUCTANCE.txt"

shiv -b -g RESISTANCE "./${FILENAME}.his" > "${FILENAME}TxtFiles/${FILENAME}_RESISTANCE.txt"

shiv -b -g GRINDNOIO "./${FILENAME}.his" > "${FILENAME}TxtFiles/${FILENAME}_GRINDNOIO.txt"

@ RunID = ${RunID} + 40

end
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Appendix E. MATLAB Script for Post-processing

%% INDUCTANCE CONVERGENCE STUDY

% Bobby Doney

% 1 Sep. 2011

% 2 Feb. 2012: Need to still update automation of axial extent. Pieces are

% there, but it’s not based on selecting it as the ’study’ variable

in2m = 0.0254;

in2mm = in2m*1e3;

%% Establish which study we are looking at and setup up values unique to that case

% Study name must match data directory names, but with whitespace.

%study = ’Axial Extent’

study = ’Aztec Tolerance’

%study = ’Mesh Gap’

%study = ’Ntheta’

%study = ’Radial Extent’

%study = ’Radial Mesh Bias’;

%study = ’Resolution’;

res = ’QuarterInch’;

%res = ’EighthInch’;

% Variable: Convert relevant variable name to displayable form

VARIABLE = ’INDUCTANCE’;

%VARIABLE = ’CURRENT’;

%VARIABLE = ’RESISTANCE’;

%VARIABLE = ’GRINDNOIO’;

variable = lower(VARIABLE);

Variable = regexprep(variable,’(\<[a-z])’,’${upper($1)}’);

% Remove whitespaces from study name to match directory names

studyNoWS = regexprep(study,’[^\w’’]’,’’);

% Make custom filename for saved EPS image

printfilename = [studyNoWS,Variable];

switch study

case ’Axial Extent’

nameprefix = ’CoilN9s14r2Ax’;

IDstart = 1;

IDstep = 1;

IDend = 8;

XLabelName = [’\bf’,study,’ (multiples of helicoil section length)’];

case ’Aztec Tolerance’

nameprefix = ’CoilTol_e-’;
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IDstart = 4;

IDstep = 2;

IDend = 12;

XLabelName = [’\bf’,study,’ (10^{-x})’];

case ’Mesh Gap’

nameprefix = ’CoilN9s14Gap’;

IDstart = 1;

IDstep = 1;

IDend = 6;

XLabelName = [’\bf’,study,’ (inches)’];

case ’Ntheta’

nameprefix = ’CoilN9s14r4t’;

IDstart = 80;

IDstep = 40;

IDend = 320;

XLabelName = [’\bf’,study,’ (Number of azimuthal cells)’];

case ’Radial Extent’

nameprefix = ’CoilN9s14r2R’;

IDstart = 1;

IDstep = 1;

IDend = 4;

XLabelName = [’\bf’,study,’ (multiples of outer conductor radii)’];

case ’Radial Mesh Bias’

nameprefix = ’R3RadMeshBias’;

IDstart = 2;

IDstep = 2;

IDend = 12;

XLabelName = [’\bf’,study,’ (coarsening multplier)’];

case ’Resolution’

switch res

case ’EighthInch’

nameprefix = ’CoilN9s18r’;

printfilename = [studyNoWS,Variable,’s18’];

case ’QuarterInch’

nameprefix = ’CoilN9s14r’;

printfilename = [studyNoWS,Variable,’s14’];

otherwise

disp(’Resolution Name is incorrect’);

quit cancel

end

IDstart = 1;

IDstep = 1;

IDend = 5;

XLabelName = [’\bf’,study,’ (cells through conductor thickness)’];

end

format compact

source_dir = [’/Users/rdoney/Research/MFC/InductanceStudy/’,studyNoWS];

cd (source_dir);

i=1; % initialize results vector index

%% Read in all of the data from the txt files generated by shiv
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for EvalID = IDstart:IDstep:IDend

% Build up the directory and file name of the current evaluation

CurrentEvalName = ([nameprefix,num2str(EvalID)]);

% Check to see if relevant data exists

if exist([CurrentEvalName,’TxtFiles’],’dir’)

disp([pwd,’/’,CurrentEvalName,’ exists’])

% Read in the data for the current Dakota evaluation.

% Each file has time as the first column and some other VARIABLE as the

% second.

xyDataFileImport([CurrentEvalName,’TxtFiles/’,CurrentEvalName,’_’,VARIABLE,’.txt’])

% Some datasets use an original baseline rather than rerunning that sim

% over again. There are only 2 cases of that. We need to use those .his

% files to fill in the missing data. There are only 2 baseline

% refs, and only 1 case of one of those. That data will have to be

% read in and processed just like above.

else

BaselineDir = ’/Users/rdoney/Research/MFC/InductanceStudy/Resolution’;

switch studyNoWS

case ’Ntheta’

BaselineFile = ’CoilN9s14r4’;

otherwise

BaselineFile = ’CoilN9s14r2’;

end

disp([CurrentEvalName,’ does not exist, using ’,BaselineFile])

xyDataFileImport([BaselineDir,’/’,BaselineFile,’TxtFiles/’,BaselineFile,’_’,VARIABLE,’.txt’])

end

%Store the time for each evaluation as a column in the TIME matrix

TIME(:,EvalID) = data(:,1)*1e3; % milliseconds

%Store the VarTimeSeries for each evaluation as a column in the VarTimeSeries matrix

switch VARIABLE

case ’INDUCTANCE’

VarTimeSeries(:,EvalID) = data(:,2)*1e9; % nanohenries

case ’CURRENT’

VarTimeSeries(:,EvalID) = data(:,2); % amps

case ’RESISTANCE’

VarTimeSeries(:,EvalID) = data(:,2)*1e3; % milliohms

case ’GRINDNOIO’

VarTimeSeries(:,EvalID) = data(:,2)*1e6; % microseconds

end

% Grab the last data point for each evaluation - which should be the

% converged value

ConvergenceVar(i) = VarTimeSeries( length(VarTimeSeries(:,1)) , EvalID);

i=i+1;

end

%% Calculate analytic inductance per unit length using dimensions from sims

% Inner Conductor

arm_thick = 1/4*in2m;
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d_arm_out = 3*in2m;

r_arm_out = d_arm_out/2;

r_arm_in = r_arm_out-arm_thick;

r_arm_center = (r_arm_in+r_arm_out)/2;

% Outer Conductor

helix_thick = 1/8*in2m;

d_helix_out = 4.5*in2m;

r_helix_out = d_helix_out/2;

r_helix_in = r_helix_out-helix_thick;

r_helix_center = (r_helix_in + r_helix_out)/2;

Lmiddle= 8*in2m;

Lback = 3.25*in2m; % length of current return (m)

Lfront = Lmiddle*[1:1:8]; % length of current feed (Multiples of Lmiddle) (m)

h = Lfront + Lback; % Total length of coaxial pieces (m)

% Using NiederhausÕ notation

mu = 4*pi*1e-7;

r4 = r_arm_in;

r3 = r_arm_out;

r2 = r_helix_in;

r1 = r_helix_out;

e3 = -(r4^4*log(r4/r3))/(r4^2-r3^2)^2 + 0.25*(3*r4^2-r3^2)/(r4^2-r3^2);

e2 = log(r2/r3);

e1 = (r1^4*log(r1/r2))/(r1^2-r2^2)^2 - 0.25*(3*r1^2-r2^2)/(r1^2-r2^2);

L3 = mu/(2*pi)*e3; % Inductance per unit length

L2 = mu/(2*pi)*e2; % Inductance per unit length

L1 = mu/(2*pi)*e1; % Inductance per unit length

LperLengthAnalytic_nH_m = 1e9*(L1+L2+L3); % Inductance per unit length (nH/m)

L_nH = LperLengthAnalytic_nH_m*Lfront; % Analytic Inductance for different coax lengths (nH)

% If we subtract off the growth in inductance due to the increasing feed

% length, the total inductance should remain approximately the same since

% nothing else is changing.

% analytic coaxial inductance for 1 coil length = 17.2024 nH

% AxialConv = ConvergenceVar - L_nH;

% for i=1:length(ConvergenceVar)-1

% dConvergenceVar(i) = abs(AxialConv(i+1) - AxialConv(i));

% end

%set(gca,’XTickLabel’,{’1’;’2’;’3’;’4’;’5’;’6’;’7’;’8’;’9’})

%% Plot data
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switch VARIABLE

case ’INDUCTANCE’

YLabelName = [’\bf’,Variable,’ (nH)’];

case ’CURRENT’

YLabelName = [’\bf’,Variable,’ (A)’];

case ’RESISTANCE’

YLabelName = [’\bf’,Variable,’ (m\Omega)’];

case ’GRINDNOIO’

YLabelName = [’\bf’,Variable,’ (\mus)’];

end

% Axial Length Case

% plot(1.5:1:7.5,dConvergenceVar,’-ob’,’MarkerFaceColor’,’Blue’)

% ylabel(YLabelName)

% grid

% set(gca,’Box’,’on’)

% xlabel(XLabelName)

h=figure;

subplot(2,1,1)

plot(IDstart:IDstep:IDend,ConvergenceVar,’bo-’,’MarkerFaceColor’,’blue’)

%plot(IDstart:IDstep:IDend,ConvergenceVar./Lfront,’bo-’,’MarkerFaceColor’,’blue’)

%plot(IDstart:IDstep:IDend,dConvergenceVar,’bo-’,’MarkerFaceColor’,’blue’)

ylabel(YLabelName)

grid

set(gca,’XTick’,IDstart:IDstep:IDend,’Box’,’on’)

%print(h,’-depsc’,[printfilename,’.eps’])

%

% Fractional change in the results

NewConvergenceVar = ConvergenceVar;

%NewConvergenceVar = ConvergenceVar./Lfront;

for i=2:length(NewConvergenceVar)

FracChng(i-1) = abs( ( NewConvergenceVar(i) - NewConvergenceVar(i-1) )/NewConvergenceVar(i-1) ) *100;

end

XaxesStart = mean([IDstart:IDstart+IDstep])

XaxesEnd = mean([IDend-IDstep:IDend])

subplot(2,1,2)

plot(XaxesStart:IDstep:XaxesEnd,FracChng,’o-’,’MarkerFaceColor’,’blue’)

set(gca,’YScale’,’log’)

YaxisLimits = get(gca,’YLim’);

axis([IDstart IDend YaxisLimits(1) YaxisLimits(2)])

grid

xlabel(XLabelName)

ylabel(’\bfFractional change (%)’)

set(gca,’XTick’,IDstart:IDstep:IDend,’Box’,’on’)
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Appendix F. Magnetic Field Behavior Without Coil (As Compared to Figure

6)

Figure F-1. Helicoil geometries and their associated steady-state magnetic field distribution.
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